If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-45=0
a = 1; b = 1; c = -45;
Δ = b2-4ac
Δ = 12-4·1·(-45)
Δ = 181
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{181}}{2*1}=\frac{-1-\sqrt{181}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{181}}{2*1}=\frac{-1+\sqrt{181}}{2} $
| 7-x-1=9-2x+1 | | x+x.6=156 | | 50+p=116 | | 48+p=111 | | .15x+x=10 | | 2k-3k(k-1)=15-4k | | 8x+3=12+5x | | 40+5x=-400 | | 6160=p*5 | | 1-(y+2)=5+y | | 5p-15=3p-6 | | 8x+60=84 | | b*4=44 | | 20=s+362 | | 80-x=22 | | 4x+3x-2=49 | | 5h-9=-8 | | x3−4x2=0 | | 25000×280000000=x | | 2x+x+40=136 | | 5h-8=-9 | | x-45=87 | | 5h-9=-9 | | 2^2x+7.2^x=8 | | 3u+7=28 | | -6(9-4)=z | | 5x-16=4x-14 | | x^-3x=12 | | 7x^2+14x+14=0 | | -x^2-x-198=0 | | 2x2–72=0; | | 2(2+7x)=-172 |